Segmentation automatique d'images numériques issues de photographies aériennes : application à la détection et à la géo-localisation des tombes dans un cimetière

Soutenance

Louis Tribouillard

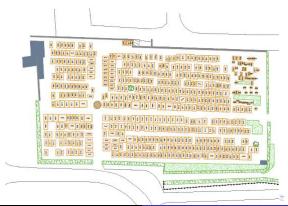
LIRMM (Laboratoire d'Informatique, de Robotique, et de Micro-électronique de Montpellier) Société Berger-Levrault

12 septembre 2013

Sommaire

- Introduction
 - Contexte
 - Le stage
- Travail proposé
- Travail réalisé
 - Compréhension
 - Utilisation
 - Comparaison
 - Amélioration
- Conclusion

Introduction Contexte



- Contrat avec Berger-Levrault
- Encadrants académiques : MARC CHAUMONT, GÉRARD SUBSOL
- Encadrant industriel: LAURENT DERUELLE
- Tuteur enseignant : MARC ANTONINI

Introduction Le stage

- Dans la continuité d'un stage de l'année dernière (F. Courtade)
- Faciliter la réalisation de cadastres pour l'entreprise Berger-Levrault

Introduction Le stage

Détection de tombes dans un cimetière à partir d'images aériennes

Florian Courtade a implémenté deux approches 1 :

Lignes de partage des eaux :

Précision: 0.23 Rappel: 0.24 F-score: 0.24

Viola & Jones :

Précision: 0.72 Rappel: 0.49 F-score: 0.53


• Résultats trop faibles pour une utilisation industrielle

^{1.} Florian Courtade, Segmentation automatique d'images numériques : Application à la détection des tombes dans un cimetière - Rapport de stage, 2012

Travail Proposé

Méthode d'Aldavert et al. 2 :

- plus rapide (apprentissage)
- plus performante (détection)

http://www.cvc.uab.cat/~aldavert/plor/

^{2.} Ricardo Toledo David Aldavert, Arnau Ramisa and Ramon Lopez De Mantaras. Fast and robust object segmentation with the integral linear classifier. In 23rd IEEE Conference on Computer Vision & Pattern Recognition (EVPR), 2010.

Travail Proposé

Étude de la méthode :

- Compréhension
- Utilisation
- Comparaison
- Amélioration

Descripteur IHOG:

- Integral Histogram Of Gradients
- HOG extraits d'une grille dense
- Principe d'images intégrales

Descripteur HOG:

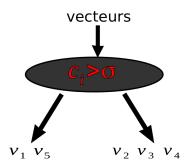

Gradients en X et Y

- Dérivée directionnelle et module
- Histogramme des orientations


- Quantification : utilisation d'un dictionnaire de mots visuels
- Extremely Randomized Forest
- Forêt d'arbres dont seront extraits les mots visuels

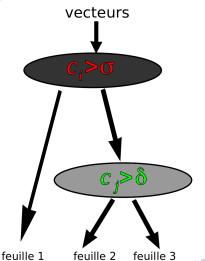
Soit un ensemble de N descripteurs dont on connaît la classe.

Un vecteur contient n valeurs scalaires : $\mathbf{v} = (c_1, c_2, ..., c_n)$


On va choisir au hasard la i^e valeur : c_i

On effectue pour chaque c_i un test booléen $T:\{c_i>\sigma\}$ avec σ un scalaire choisi au hasard, par exemple 20 :

On obtient une partition selon le test booléen



On va vérifier si la partition est convenable en utilisant une formule basée sur l'entropie de Shannon.

Si la partition n'est pas satisfaisante on recommence la découpe selon un autre test booléen (valeur choisie au hasard)

- Partition convenable : Application de l'algorithme sur chacun des deux sous-ensembles.
- Condition d'arrêt :
 - Tous les éléments d'un sous-ensemble appartiennent à la même classe
 - Profondeur maximale atteinte

Lorsque la condition d'arrêt est atteinte pour chaque branche, on obtient notre arbre :

Dictionnaire de mots visuels :

- Chaque feuille correspond à un mot visuel
- Parcours de la forêt (racine jusqu'aux feuilles)
- Mot visuel : index de la feuille atteinte
- N mots visuels par descripteur

Histogramme obtenu à chaque pixel :

- Taille : taille de la forêt (ensemble de toutes les feuilles)
- Construit à partir de tous les mots visuels contenu dans le voisinage du pixel
- Représente la fréquence d'apparition de chaque mot visuel

Travail Réalisé - Étude de la méthode Classifieur

Classifieur linéaire : LR-SVM

- Classe les histogrammes de mots visuels
- Entraînement : histogramme des pixels dont on connaît la classe

Travail Réalisé - Utilisation du logiciel Base de données

Constitution de la base de données :

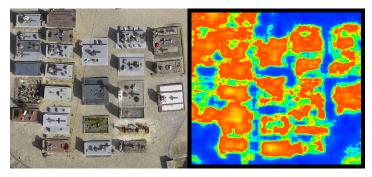
150 images 640*480 pixels ainsi que leurs vérités terrains.

Travail Réalisé - Utilisation du logiciel Tests

Première version du code d'Aldavert

- Reconnaissance globale fonctionne
- Segmentation pixel ne fonctionne pas

Deuxième version du code d'Aldavert


• Reconnaissance pixel fonctionne.

Travail Réalisé - Utilisation du logiciel Difficulté rencontrée

Difficulté : Segmentation pixel \rightarrow Segmentation objet

• Amoncellement de tombes (carte de probabilité)

- Seuillage pas assez performant
- Utilisation de traitements plus précis

Travail Réalisé - Premier résultat Résultat global

résultat obtenu avec la méthode d'Aldavert

- Base d'apprentissage : 150 images 640*480
- Forêt de 10 arbres
- Seuillage à 85% de probabilité

Travail Réalisé - Comparaison des méthodes

Méthode d'Aldavert

Méthode Viola & Jones

Résultats :

Viola & Jones :

Précision: 0.724 Rappel: 0.582 F-score: 0.606

• Aldavert et al. :

Précision: 0.764 Rappel: 0.530 F-score: 0.565

Performance globale sensiblement identique

Travail Réalisé - Comparaison des méthodes

Méthode d'Aldavert

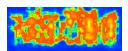
Méthode Viola & Jones

Comparaison:

• Viola & Jones :

Durée de l'apprentissage : 2 semaines Bonne détection des tombes verticales

• Aldavert et al. :

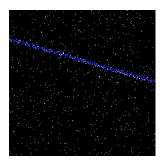

Durée de l'apprentissage : une dizaine d'heures

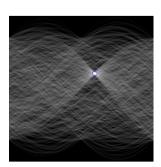
Robuste à la rotation

Travail Réalisé - Amélioration

Améliorer la méthode d'obtention de la segmentation objet :

- Détection de zones intéressantes (Amas de tombes) avec la carte de probabilité
- Obtention des contours (filtre de Canny)
- Technique de détection de rectangle (Hough) dans ces zones

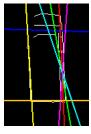



Amas de tombes dans la carte de probabilité et image filtrée correspondante

Travail Réalisé - Amélioration Transformée de Hough

Transformée de Hough:

Ligne détectée

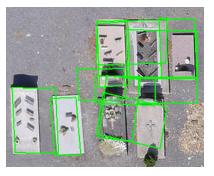

Espace de Hough

Travail Réalisé - Amélioration Détection de rectangle

Méthode ³ efficace sur une tombe seule :

Image initiale

Lignes détectées



Rectangle détecté

^{3.} Claudio Rosito Jung and Rodrigo Schramm. Rectangle detection based on a windowed hough transform. in Proceedings of the Computer Graphic and Image Processing, 3 2004

Travail Réalisé - Amélioration Détection de rectangle

Difficulté sur une image contenant plusieurs tombes rapprochées :

Détection de tombes à l'aide de la transformée de Hough

Conclusion

- Études de nombreuses méthodes techniques :
 - ERF
 - Transformée de Hough
 - Filtre de Canny
- Résultat préliminaire pour une thèse
- Publication Digital Heritage 2013⁴

^{4.} M. Chaumont, L. Tribouillard, G. Subsol, F. Courtade, J. Pasquet, M. Derras. Automatic localization of tombs in aerial imagery: application to the digital archiving of cemetery heritage. Digital Heritage, Marseille (France), October 2013. Accepted for presentation.

Merci de votre attention